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Abstract

This research was completed in tandem as a project funded through MoDOT and the
Mid-America Transportation Center. It used deep learning methods, along with weather
information from NOAA/National Weather Service and geospatial data from the USGS National
Map and other public geospatial data sources, to develop forecasting tools capable of assessing
the probability of flash flooding in high risk areas. These tools build on existing models
developed by the USGS, FEMA, and others and were used to determine evacuation routing and
detours to mitigate the potential for loss of life during flash floods. The project scope included
analysis of publicly available data in Greene county in and around Springfield, MO as part of a
pilot project in Missouri. This data was then used to determine the probability of flash flooding
in order to model evacuation or detour planning modules that can be implemented to assure the
safety of the community and highway personnel. These modules used existing rainfall data and
weather forecasts in a three-day sliding window to include soil moisture in the flash flood
predictions. The transportation safety or disaster planner can use these results to produce
planning documents based on geospatial data and information to develop region-specific tools

and response methods to potential flash flood events.
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Executive Summary

This research uses publicly available geospatial data to create a historic flash flood
database that is then used as an input for a deep learning model capable of classifying flash flood
risk for discrete locations within an area of interest (AOI) as presented in Figure E.1=. The
project scope includes analysis of publicly available flash flood data for a subwatershed in
Greene County, Missouri that frequently experiences flash floods. This data was procured from
USGS, NOAA, and NWS. A framework is presented that extends the utility of standard flash
flood susceptibility maps by adding a dynamic predictive component based on potential rainfall

events.

Figure E.1 Flash flood risk for AOI in Greene County, MO

Flash flood susceptibility maps are not created with transportation-specific use cases.
Consequently, there is no methodology available that provides both risk quantification and
optimal rerouting guidance. The algorithms used in this research capture the complex

relationship between geospatial characteristics and rainfall data to classify locations on the basis



of their flash flood risk. Elevation, slope, aspect, and curvature constitute the geospatial data
whereas day-of and prior rainfall observations represent the latter. Three machine learning
models were used: artificial neural network, logistic regression, and support vector machine. The
artificial neural network exhibited superior performance with a prediction accuracy of 85.23%.
At present, there are no flash flood prediction models being used by practitioners or local
decision makers.

An additional component of the framework is the determination of optimal rerouting
protocols which includes in-route traffic and road segments at high risk for flash flood events in
its assessment. This feature provides transportation officials with critical information that can
guide the deployment of resources in a timely manner to minimize risk exposure to motorists.
Collectively, the framework presented here provides a suite of tools not currently in use at any

level throughout the state.
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Chapter 1 Literature Review

Flash floods are one of the most frequently occurring and dangerous natural disasters.
Studies of the phenomena have received widespread scholarly attention due to the loss of life and
financial and material damage caused. Research studies typically consist of developing static
flash flood susceptibility maps based on artificial intelligence models. However, there is no
methodology in the literature that extends this approach to dynamic use cases. A review of
research in flash flood susceptibility maps, artificial intelligence, and traffic simulation is
conducted and used to construct the dynamic framework presented in section two.

1.1 Flash Flood Susceptibility Maps

A flash flood susceptibility map is a data visualization medium that improves the
effectiveness of watershed management (Janizadeh et al., 2019). This is accomplished by
generating a heat map of flash flood risk based on historical events and geospatial features within
some area of interest. Methodological specifics vary, but the general framework is consistent.

The following steps outline the general approach undertaken in the literature to create
flash flood susceptibility maps. First, a flash flood inventory is created that consists of date, time,
and location information of previous flash floods. A similar dataset is compiled for non-flash
flood events to train a classification model. Second, geospatial data that influences flash flood
events is gathered. Commonly used features include elevation and elevation-derived products
such as slope, aspect, and curvature. These features are ‘static’ because they do not change over
time. Alternatively, rainfall data is procured to capture the dynamic component of flash flood
modelling. Lastly, statistical modeling, artificial intelligence approaches, or some hybrid
ensemble are used to determine the relationship between model inputs and flash flood

susceptibility risk (Lopez and Rodriguez, 2020; Nguyen et al., 2020; Janizadeh et al., 2019; Bui



et al., 2020; Bui et al., 2019; Ngo et al., 2018; Costache and Bui, 2019). The following section
provides a brief overview of the literature regarding statistical and artificial intelligence
modeling approaches used to generate flash flood susceptibility maps.

1.2 Machine Learning and Deep Learning Methods

Research efforts have been made to map the flash floods events and identify the regions
prone to this natural hazard event. Saharia et al. (2016) relied on the flood events archived data
for the last 78 years to develop a flood severity model based on different geomorphological and
climatological variables. The proposed model was then used to identify various flood hotspots
and conduct a seasonality-based analysis. Different machine learning models were tested to
identify suitable models for flash flood susceptibility mapping by Janizadeh et al. (2019).
Alternating decision tree (ADT), functional tree (FT), kernel logistic regression (KLR),
multilayer perceptron (MLP), and quadratic discriminant analysis (QDA) algorithms were
developed using historical data to develop and improve the existing flood mapping frameworks
to update the current relief and rescue protocols. An improved real-time warning system was
proposed by Acosta-Coli et al. (2018) to improve the existing warning methods for the pluvial
flash floods triggered by heavy rainfall. A web-based application was implemented by the
research team to elicit a timely response from people during a potentially hazardous flash flood
event.

Due to advancements made in the field of data analysis and machine learning in recent
years, it has become easier to implement suitable machine learning algorithms and therefore
develop more robust flood forecasting model architectures. Precipitation data from a dual-
polarization S-band Doppler weather radar (SPOL) was used as an input for the regression model

by Lopez and Rodriguez (2020) to calculate timely warnings for various watersheds in the city of



Sao Paulo, Brazil. A novel support vector regression (SVR) based model was proposed by Wu et
al. (2019) to improve the lead times in the mountainous regions of China and develop better flash
flood warning and response systems. Flash floods datasets from 1984 to 2012 were used to
identify important variables needed for the model architecture to predict peak values for flood
forecasting. A flash flood warning system using short message service (SMS) was also proposed
by Castro et al. (2013) using the regression model based on water level and speed variables. This
SMS based warning system is activated when the water level exceeds the safety threshold value
so people living in the flood-prone areas can be made aware of the impending danger on a timely
basis. This tool can also be used by the local authorities to prepare better flash flood management
protocols and operations. Satellite-derived datasets were used by Chiang et al. (2007) along with
the rain gauge measurements to devise a neural network-based hydrologic model that used the
merged time-series dataset to analyze both intensity and pattern of the precipitation events. This
model can be used to process the satellite-derived datasets for areas where gauge data points are
scarce and develop respective flood forecasting models.

Compared to other natural disasters, flash flood events are relatively hard to forecast
which makes it very important to inspect and update the current forecasting approaches which
can then be used by the concerned authorities to develop better flash flood management policies.
Therefore, machine learning and deep learning provide a powerful tool to identify the complex
relationships between flood influencing factors and flash flood risk quantification. The result of
these classifications can be used to identify and remove flood-affected road segments from a

transportation network for re-routing simulation as presented in the following section.



1.3 Traffic Simulation

A traffic simulation is used to demonstrate how closing flood affected road segments
would impact traffic flow. Simulating traffic involves creating a network that includes an origin-
destination matrix, vehicle speeds, vehicle types, speed limits, traffic lights, and the physical
roads themselves. The Simulation of Urban Mobility software (SUMO) integrated with deep
learning models has been used to predict traffic congestion and flow from Hurricane Harvey in
2017 (Fan et al., 2020). In the simulation, the focus was major highways (50 km/hr and over).
Corns et al. (2019) used the SUMO software to model optimal re-routing protocols for flood
affected road segments near Valley Park, Missouri. SUMQ’s capacity to integrate Python
functions results in greater customization that improves the quality of the simulations. Therefore,
SUMO is an ideal software to capture traffic dynamics in a flash flood context. The integration
of Python with SUMO will be explained in the Methodology section.

1.4 Summary

A review of the literature revealed that flash flood susceptibility maps have begun
receiving greater scholastic attention. The first step in creating these maps is developing a
historic flash flood database. Some commonly gathered data include elevation, elevation-derived
products, and rainfall. NOAA maintains a database with specific information on various natural
disasters including flash floods. However, flash flood affected road segment information must be
parsed from narrative episodes provided by witnesses. This results in a time consuming
procedure inhibiting the development of a database that can be used for planning purposes.
Therefore, there is an opportunity to build a database that sets a standard for future data

collection efforts to be used as an input for state of the art classification techniques.



Several of the flash flood susceptibility maps present in the literature were generated
using sophisticated modelling techniques such as machine learning and deep learning. As the
quantity and quality of data continues to increase, so too will the application of these methods.
One shortcoming of these models is the lack of predictive capabilities provided in practical
applications. A model capable of providing dynamic results as rainfall is reported will provide
considerable utility to local decision makers. Once the model has identified high flash flood risk
road segments, those roads can then be proactively removed from the road network. To model
this decision, a simulation can be constructed that captures subsequent traffic behavior. The
literature is full of studies addressing each of these problems independently, but no
comprehensive methodology has been presented. The methodology provided in the next section

addresses this gap.



Chapter 2 Methodology

The objective of this study is to provide emergency management professionals with a tool

that quantifies flash flood risk at discrete locations of interest. The methodology presented in this

section follows the sequence illustrated in figure 2.1. Step 1 consists of developing a historic

flash flood database using temporal and geospatial information of previous flash flood events.

Step 2 involves the collection of explanatory data for the flash flood database developed. Step 3

extracts and converts the procured explanatory data into a tabular format for processing. Step 4

applies machine learning and deep learning techniques to predict flash flood risk of locations of

interest. Lastly, Step 5 provides a traffic re-routing simulation based on the roads identified by

the prediction model. The remainder of this section provides a litany to reproduce the results

presented.

Create
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Data Layers
5, ™
= Develop * Procure Data
historic flash * Geospatial
goog « Rainfall
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Figure 2.1 Model Framework
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2.1 Develop Historic Flash Flood Database

Development of a historic flash flood database consists of gathering information related
to previous flash flood events. The National Oceanic and Atmospheric Administration (NOAA)
maintains the Storm Events Database that provides this information (NOAA, 2020). Figure 2.2
provides an example of the user interface provided. The tool provides the user with the ability to

procure unique event type information at the county level resolution over a specified period.

Storm Events Database
Data available from 01/1950 to 07/2020

State/Area: Event Type(s):
Debris Flow -
Begin Date: / / [1950 v | Dense Fog
Dense Smoke
End Date: [07] / [31v] / (2020 v iz} Do
ust Devi
Dust Storm
County: LUK Excessive Heat
Franklin - Extreme Cold/Wind Chill
Gasconade Flash Flood
Gentry Flood
Greene Freezing Fog
Grundy FrostFreeze
Harrison Funnel Cloud
Henry Hail
Hickary Heat
Holt Heavy Rain -

o

Advanced Search and Filter Options

Figure 2.2 Storm Events Database User Interface

Once this information is specified, the user can then download an Excel or comma
separated value file that includes temporal and geospatial information. However, upon further
inspection it is clear the information provided is not consistent. Each data entry consists of
unique latitude and longitudinal coordinates in addition to narrative episodes provided by the
spotter responsible for the entry. Table 2.1 provides an example of database entries for two

events. Information provided pertaining to affected roads is highlighted in yellow. Figure 2.3



provides a visual reference between the stated location of the event and the actual location of the

affected road given the information provided in the narrative. Due to this geographical

discrepancy, each data entry must be investigated to determine the actual location of the flash

flood affected road segments.

Table 2.1 Storm Events Database Sample

EVENTID | BEGIN DATE | LATITUDE | LONGITUDE EVENT NARRATIVE EPISODE NARRATIVE
A slow moving storm system caused heavy rain to occur
across much of southern and central Missouri. This event
followed quickly on the heels of a previous flood event
that occurred from the 4th through the 6th of January,
therefore soils were nearly saturated at the onset of the
event. The lack of January vegetation also contributed to
5435706 1/12/05 37.2 -93.3 increased runoff and flooding. In Greene County, the
primary areas that flooded were low water crossings and
low lying areas. Other specific locations affected by
flooding include: areas along Ward Branch Creek in
Springfield, a section of Highway CC two miles west of
Fair Grove, the intersection of Farm Road 235 and
Highway E, the intersection of Farm Roads 231 and 2.
A slow moving thunderstorm
with heavy rain caused the
South Dry Sac Creek to rise
out of its banks and flood a
section of East Valley Water
Mill Road in northeast
5470179 |  8/21/05 37.2 933 Springfield. Several other
sections of Springfield
experienced flash flooding,
which prompted numerous
water rescues by Springfield
Fire and Police Departments.
One house experienced six
inches of flowing water.




70179 Actual” i@

Figure 2.3 Geographical Discrepancy Example

After this procedure has been conducted for each of the entries, the resulting database can
then be uploaded to a geographic information system (GIS) software for visualization. Figure 2.4
provides the output of this procedure (generated in ArcGIS Pro) for an area of interest that will
be discussed further in the next section. The red points represent the locations determined by the
narrative episode investigation and are superimposed on a road network procured from the
National Transportation Dataset (NTD) (USGS, 2020a). For model training purposes, a dataset
consisting of non-flash flood locations must also be developed. The results of this procedure are

illustrated in figure 2.5 and are represented by green squares.



Figure 2.4 Flash Flood Locations

Figure 2.5 Non-flash Flood Locations

After the flash flood database is constructed, the next step is gathering flash flood
explanatory data. The next section provides guidance on procuring and processing that data.

2.2 Create Explanatory Data Layers

Based on the literature, four geospatial features were identified as flash flood influencing

factors: elevation, slope, aspect, and curvature. Elevation can be procured from the United States



Geological Survey’s (USGS) National Map (USGS, 2020b). For the area of interest presented in
the previous section, elevation products are available in light detection and ranging (Lidar)
format. To generate the elevation profile, 135 files were downloaded as illustrated by figure 2.6.
Each square represented in the 15x9 grid corresponds to a unique lidar file. This gridded
visualization of the lidar data is commonly referred to as an LAS dataset. Using the LAS Dataset
to Raster tool and clipping procedures, the gridded representation can then be converted into a

raster elevation layer as seen in figure 2.7.

Figure 2.6 Lidar File Representation
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Elevation

Value
487.26

344,581

Figure 2.7 AOI Elevation Profile

Slope, aspect, and curvature layers can be quickly generated using the correspondingly
named tools in a GIS software. Each layer requires the elevation layer presented in figure 2.7 as

an input. Figure 2.8 through 2.10 represent the outputs of this operation.

12



Figure 2.8 AOI Slope Profile

Figure 2.9 AOI Aspect Profile
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Slope

Value
B <172
<3.43
<5.71
<8.53
=11.3
<14.04
<16.7
<21.8
<30.96
<45
<90

Aspect

5
C
[0)

Flat (-1)

North (0-22.5)
Northeast (22.5-67.5)
East (67.5-112.5)
Southeast (112.5-157.5)
South (157.5-202.5)
Southwest (202.5-247.5)
West (247.5-292.5)
Northwest (292.5-337.5)
North (337.5-360)



Curvature

Value
281.529

. -85.7826

Figure 2.10 AOI Curvature Profile

Elevation, slope, aspect, and curvature each represent static explanatory layers that do not
change significantly over time. Alternatively, rainfall provides a dynamic input that varies. Each
of the entries in the flash flood database is associated with a specific date. Therefore, rainfall data
can be procured from the National Weather Service (NWS) Archive. Rainfall data from January
1, 2005-June 27, 2017 is available in point format (NWS, 2020a). A nearest neighbor heuristic is
used to apply a rainfall amount to flash flood and non-flash flood locations. From June 28, 2017-
Present, rainfall data is available in a raster format (NWS, 2020b). In these instances, rainfall
amount is assigned based on the underlying pixel value. Flash floods often occur quickly
following a rainfall event. However, soil moisture before the causative rainfall event plays a
significant role in the flash flood event. Therefore, rainfall data for each of the three days prior to
the flash flood event is also captured to serve as a proxy for soil moisture. Once the rainfall
amounts have been assigned, explanatory data layer values can be extracted using point sampling

as described in the following section.
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2.3 Conduct Point Sampling

After the flash flood database has been compiled and explanatory data layers have been
generated, point sampling is the final step prior to classification models being applied. Point
sampling consists of extracting data layer values at discrete locations. In this context,
explanatory raster layer values for each of the discrete flash flood and non-flash flood locations
are extracted and compiled in a tabular format. Using the ArcGIS Extract Multi Values to Points
tool, this can be done quickly. Figure 2.11 is the final visual output. Table 2.2 is a sample of the

corresponding attribute table for the flash flood test set.

Figure 2.11 Final Visual Output

Each data point in both the flash flood and non-flash flood datasets has a similar entry. ID
is a unique identification number denoting that point’s position in the dataset. Name refers to the

original Storm Event’s Database identification number. Latitude and longitude are the
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coordinates for the entry. Date provides the start of the event. Each of the rainfall points
corresponds to the observed rainfall at the entry. Summation of antecedent rainfall is the result of
adding up all prior rainfall amounts. Curvature, aspect, slope, and elevation are the result of point
sampling extractions explained earlier in this section. With the flash flood database now in
tabular format it can be routinely used in an array of machine learning and deep learning

classification tools. Model specifics are presented in the following section.

Table 2.2 Point Sampling Output Example

ID 1
Name 22814a
Latitude 37.15
Longitude -93.31
Date 2007-03-20
Rainfall Day of (in) 0.39
Rainfall 1 Day Before (in) 0.00
Rainfall 2 Days Before (in) 0.01
Rainfall 3 Days Before (in) 0.00
Summatiqn of Aptecedent 001
Rainfall (in) )
Curvature (dimensionless) 0.33
Aspect (degrees) 227.36
Slope (degrees) 1.05
Elevation (m) 383.49

2.4 Machine Learning and Deep Learning Models

In order to identify points (with latitude and longitude coordinates) susceptible to flash
flooding, different classification-based machine learning, and deep learning techniques were
implemented on the output dataset obtained from the point sampling operation. The dataset
consists of two classes, 0 and 1 which represent non-flash flood and flash flood labels,
respectively. Artificial neural network (ANN), logistic regression, and support vector machine

(SVM) algorithms were used to develop classification models and classify the binary labels into
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two different categories. The dataset contains a total of 350 points/observations with respective
values for variables or features mentioned in table 2.2. Out of these 350 points, 185 points
belong to class label 0 i.e. non-flash flood points or locations whereas 165 points belong to label

1 i.e. flash flood points or locations as shown in figure 2.12.

Target Variable (flashflood) Value Counts

175 A1
150 A1
125 1

€ 100 1 185 non-flash flood points

165 flash flood points

25 1

flashflood

Figure 2.12 Flash Flood Data Point Distribution

Figure 2.13 shows the artificial neuron network (ANN) developed to receive the output
data from point sampling as input and perform the binary classification task to identify potential
flash flood locations. The different layers of a neural network contain neurons that represent
mathematical functions required to accept input data and generate output values for the
succeeding layer. The neurons in the input layer receive the input data’s variables and pass it on
to the hidden layer which applies the activation function to the received data before further
passing its respective output values to the output layer. The output from the hidden layer is

processed by the neurons in the output layer before generating a boolean value for the classified
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label. For the binary classification task, the sigmoid activation function is utilized to generate the
required output values in the range [0,1]. The output values generated by this sigmoid function in
the final output layer of the neural network correspond to probability values of a given
observation belonging to class 1 or positive class representing flash flood-prone locations. By
default, any output probability value below the threshold value of 0.5 is labeled as class 0 (non-
flash flood-prone locations) and a value above 0.5 falls under class 1 (flash flood-prone
locations). Apart from this default probability threshold value of 0.5, different threshold values
0f 0.6, 0.7, 0.8, and 0.9 are also used to test the models and identify respective flash flood-prone

locations belonging to the positive class 1.

O

Neuron

Model Qutput

E—
Model Input

| 4

Output Layer

Input Layer

Hidden Layer

Figure 2.13 Artificial Neural Network
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A model based on the logistic regression model is also developed to analyze the variables
from the 350 input data points and then generate the binary output variable based on the logistic
function as displayed in Figure 2.14. The accuracy of this model is then compared with the

performance of the above-mentioned neural network model to conduct further analysis.

False
Boolean
Output

Logistic
Regression
Model

Variable n

True
Boolean
Output

Input Variables

Figure 2.14 Logistic Regression

A third machine learning model, support vector machine (SVM) is also proposed and
implemented for the classification task as exhibited in figure 2.15. A support vector machine is a
supervised learning algorithm that receives the labeled input data to further partition it into two
different classes, class 0 and class 1. We can plot the available observations in an n-dimensional
space (where ‘n’ represents the number of features or variables) and then identify the suitable

hyperplane to distinguish between the distinct classes. In binary classification tasks, the
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hyperplane is a decision boundary that separates the two classes, and the support vectors are the
data points adjacent to it. For the project, the input data is classified using support vector
machine algorithms based on both linear and sigmoid kernels, respectively. A ‘GridSearch’
approach was also implemented to identify the optimum values of the support vector machine
hyperparameters. Another support vector algorithm was then executed using the hyperparameter
values obtained from the ‘GridSearch’ process. The performance metrics of both the support
vector machine models are analyzed and compared with the similar metrics from both artificial

neural network and logistic regression models to choose the best classification model.

4 Support
Vectors

We [casso Class 1 +
++
»* ++3

Figure 2.15 Support Vector Machine

The dataset derived from the point sampling process is inspected using Python 3.6
programming language before conducting data analysis operations (data processing, data

cleaning, and exploratory data analysis, etc.) to identify relevant variables for our models. The

20



processed 350 data points are divided between the training dataset, and the testing dataset. 75%
of the total dataset, i.e. 262 observations, are allocated to the training set and the remaining 25%,
i.e. 88 observations, are allotted to the testing dataset. The training dataset consists of labeled
variables information for 262 observations needed for training the models while the testing
dataset is made up of variable information for the remaining 88 observations along with the
respective truth values needed to test the accuracy of the classification models. Both training and
testing datasets are then converted into suitable data formats to be used for analysis using an
artificial neural network, logistic regression, and support vector machines as shown in figure
2.16. In the next section, roads identified as flood affected by the best model are then removed

from the road network in a simulation setting.

Data Training Deep Learning Neural
Rainfall day of Inches Training Dataset———» Network and Machine
Rainfall 1 day before Learning Algorithms

Rainfall 2 days before
Rainfall 3 days before
Summation of
antecedent rainfall

L U N B |

K Curvature

»  Aspect

» Slope Testing Classification Output Results

»  Elevation Test Dataset ——» .

> Class label Model Comparison

Figure 2.16 Deep Learning Neural Network and Machine Learning Algorithms Framework

2.5 Traffic Simulation

The simulation used to reroute traffic based on the best classification model is used as an
input for SUMO. After the neural network gave an output of 1 (flooded) or 0 (not flooded) a

network was formed for the values given a “1”. The networks were exported from Open Street
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Maps (figure 2.17) and converted to an xml document. The xml network was then edited using
the text editor NetEdit. This application allows the user to edit the converted networks, for this
report it was used to delete the roads predicted to flood (figure 2.18). Once the networks had the
appropriate roads removed, a Python file was generated and integrated to assign “random trips”
for the cars in the simulation. This was considered the standard flow of traffic. One the Python
file is integrated, a SUMO simulation was generated and data was extracted to predict the travel
time. The travel time was then compared to the original travel time, 1.e. if the roads were not
flooded (figure 2.19). In the next section a case study is presented that demonstrates

methodological effectiveness.
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Chapter 3 Results and Discussion
In consultation with key stakeholders, several counties in Missouri were identified as
potential test sites. Ultimately, Greene County was chosen to demonstrate methodological
efficacy given data availability and flash flood frequency.

3.1 Study Area

Greene County is located in the southwestern part of Missouri as illustrated by figure 3.1
(Benbennick, 2006). The county includes the Springfield Metropolitan Area with an estimated

population of almost 170,000 residents (Census Bureau, 2020).

Figure 3.1 Greene County, Missouri

A population center of this size generally results in high traffic flow and significant
economic operations. Therefore, flash floods pose a significant risk to motorists and the region’s
economic livelihood. While rainfall is the most common flash flood inducing factor, it is
generally dependent on watershed characteristics. Figure 3.2 presents the flash flood locations
from the Storm Events Database for Greene County with respect to 12-digit hydrologic unit code

boundaries (subwatershed) (USGS, 2020c). The purple line corresponds to the county outline
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and the green lines delineate the subwatershed boundaries. Discrete flash flood locations are
represented as a heat map to demonstrate the high frequency of flash floods within a specific

subwatershed.

Figure 3.2 Greene County Flash Flood Hotspot

This evidence justifies the selection of this subwatershed as a test bed for the
methodology presented. Figure 3.3 was created by following the steps presented in Section 2 for
developing a historic flash flood database, creating explanatory data layers, and conducting point
sampling for discrete locations. Explanatory data is then extracted in tabular format and used as
an input in machine learning and deep learning models. The results of those procedures are

presented in the next section.
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Figure 3.3 Final Visual Output

3.2 Machine Learning and Deep Learning Model Results

Three different types of artificial intelligence models, artificial neural network (ANN),
logistic regression, and support vector machine (SVM) are implemented to conduct the
classification task and identify the locations prone to flash flooding events. The artificial neural
network consists of 9 different input parameters or variables, the ‘Adam’ learning rate optimizer,
and the ‘sigmoid’ activation function. The hyperparameters, ‘epochs’ and ‘batch size’ are
assigned values of 1000 and 10 respectively. The artificial neural network is run on the test data
containing feature information for 88 locations and delivers a classification accuracy of 85.23%.
The model correctly classified a total of 75 out of 88 locations and has an error rate of 14.77%.
The confusion matrix is shown in figure 3.4 and displays the model performance of this
‘sigmoid’ based artificial neural network. Out of 88 total observations, the model identified 37

locations prone to flash floods and assigned them class labels equal to one. The remaining 51

26



observations were classified as non-flash flood-prone locations by the classifier. A total of 46
and 42 observations are labeled as true flash flood and non-flash flood locations respectively in

the testing dataset.

True Labels

Predicted Labels

Figure 3.4 Artificial Neural Network Confusion Matrix

A second logistic model is implemented using the same dataset with a resulting
classification accuracy score of 75% which is less than the artificial neural network’s similar
performance metric. Also, the error rate of this regression classifier has increased to 25%. Figure
3.5 shows that as compared to the true positive (label 1) and true negative (label 0) class values
of 46 and 42 respectively, the logistic regression model classified 30 locations susceptible to

flash flooding whereas 58 locations were predicted to have no flash flooding events.
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Figure 3.5 Logistic Regression Confusion Matrix

The support vector machine (SVM) classifiers based on both ‘linear’ and ‘sigmoid’
kernels performed worse than the other two classifiers and produced accuracy scores of 62.50%
and 59.09% respectively. Its hyperparameters (Misclassification cost C, Gamma and kernel)
were then tuned using the GridSearch approach and the accuracy score of the model improved to
80.68% as shown by the confusion matrix in figure 3.6. Here, the error rate of 19.32% is less

than the error rate of the logistic regression model but more than the neural network’s error rate.

3%
- 30
25

-20

True Labels

Predicted Labels

Figure 3.6 GridSearch Support Vector Machine Confusion Matrix
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Finally, the artificial neural network-based classifier with the highest accuracy score of
85.23% is chosen to test the dataset containing randomly determined rainfall amounts for the
selected test region of Greene County, Missouri.

3.3 Case Study

Given the accuracy of the classification model presented, it is appropriate to apply the
model to locations of interest to local stakeholders. One such set of locations would be the
intersection of flowlines, extracted from the National Hydrography Dataset (NHD), and the road
network. Figure 3.7 provides a visualization of these locations (220 points) superimposed on the

elevation profile for the AOL

@ Flowline Road Intersection
AOI NHD Flowline

Figure 3.7 Case Study Visual

Using the methodology presented, the explanatory data layers and subsequent point
sampling can be quickly compiled. However, this case study is intended to simulate future
events. Therefore, the rainfall amount is randomly generated and assigned to each of the points.

Classification results for each of the points are presented in the following section.
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3.4 Case Study Classification Results

A test dataset with random rainfall amounts for 220 different locations in Greene County
is fed into the artificial neural network model with the highest accuracy score of 85.23% to
identify the locations susceptible to flash flood events. Using the ‘sigmoid’ activation function
based binary classifier, a set of locations is identified for different probability threshold values of
0.5 (50%), 0.6 (60%), 0.7 (70%), 0.8 (80%) and 0.9 (90%). The model automatically assigns the
class label value of 1 to all the observations above these threshold values and classifies them as
potential flash flood-prone locations. This test dataset is analyzed and processed before passing
through the selected artificial neural network. Based on different data processing operations, the
number of relevant variables or features in this test dataset is reduced to nine, which is the same
number of variables used to test and compare different classification models previously. After
implementing the neural network on this new dataset, the classifier identified 22, 17, 14, 13, and
12 flash flood-prone locations for the different probability threshold values of 50%, 60%, 70%,
80%, and 90%, respectively. Model classification results are visually presented in figure 3.8.
Additionally, a histogram of classifications is also provided in figure 3.9. An example simulation

is provided for a set of road segments that possess flash flood risk probabilities greater than 90%.
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Figure 3.8 Classification Results
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Figure 3.9 Histogram of Classification Scheme

3.5 Case Study Traffic Simulation Results

For this simulation, part of the James River Freeway and West Sunshine Street were
chosen to be removed (highlighted in yellow in figure 3.10). These roads were chosen because
both points had a predictability percentage of 90% or higher.

The results of removing the two roads increased the average travel time and average wait
time (figs. 3.11 and 3.12). The simulation where the networks were eliminated are in blue and
the original network is depicted in green. The average travel time shows the average time it took
a car to travel from their origin to their final destination. The average wait time shows the

average amount of time a car had to wait at an intersection (due to congestion) during their travel

to their destination.
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Figure 3.10 Roads Removed for Simulation Highlighted in Yellow
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Figure 3.11 James River Freeway Simulation Result
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Figure 3.12 West Sunshine Street Simulation Result
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Chapter 4 Conclusions

A model framework based on high-quality publicly available datasets is developed and
implemented to identify distinct locations in Greene County, Missouri which are prone to flash
flooding. A combination of flood, hydrological, geospatial, and transportation datasets is relied
upon to identify the roads which might be inaccessible due to flash flood events. The proposed
framework provides updated critical information to the local authorities in charge of the
emergency operations so they can implement crucial public safety measures.

The model evaluates precipitation and geospatial information for various locations in the
selected test region and utilizes an accurate deep learning algorithm to assign flash flood risk
probabilities for potential flash flood-prone points. In comparison to other classification models,
the deep learning algorithm provides a more detailed option to analyze the interactions between
different variables and pinpoint vulnerable road segments. The inclusion of diverse geospatial
features in the dataset further improves the neural network’s capability to make accurate
predictions. Additionally, the framework’s ability to suggest alternative options to reroute traffic
provides city planners with additional information to advise and assist commuters. Timely
warnings and information can then be disseminated through reliable public information systems

to warn commuters to avoid damaged or submerged road segments.
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Chapter 5 Limitations and Future Work

The results presented here demonstrate the utility of the methodology provided.
However, there are some model limitations that constitute areas of future work. Development of
the historic flash flood database was dependent on written narrative episodes provided in the
Storm Events Database. Some of the information provided was inconsistent with actual road
listing information. For example, on one occasion state routes and farm roads were used
interchangeably. One solution to this problem is for witnesses or local authorities to provide
specific coordinate information on flood affected road segments. This action would reduce the
time required to build the database and the potential for clerical errors.

Machine learning and deep learning models require copious amounts of data. Out of 350
total data points, the flash flood locations were represented by 165 entries. These methods tend
to require significantly greater quantities of data, and the accuracy of the model underscores this
fact. As data gathering methods are improved and more data becomes available, the accuracy of
the model presented will continue to improve. The result will be a more powerful tool at the
disposal of local decision makers.

Providing local decision makers with a simulation of traffic behavior is an important part
of the methodology presented. However, the simulation is constrained on the basis of how many
intersections can be considered. Simulation results are then presented as a series of findings
instead of one singular output. This sort of software limitation could be addressed by improving
the capacity of the software chosen or selecting an alternative way to conduct the simulation.

Addressing each of the areas would substantively improve the quality of the results presented.
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